Overview of Most Commonly Used Genetic Testing Options for People with Epilepsy | Test Name | Region of Genome Analyzed | PROS | CONS | |--|---|---|---| | Next Generation
Sequencing (NGS) Multi-
Gene Panel (MGP) | Specific genes (currently) recognized to be associated with epilepsy (range in 2024: 20 to >1,000 genes depending on panel) | A curated and focused set of genes, so least likely to get incidental findings High NGS depth of coverage Easiest for a neurologist without genetics expertise and/or limited access to medical geneticists to interpret and act upon Typically, the least expensive and fast turnaround Easy to order and get covered by insurance | Causative gene may not be included (yet) Limited options for reanalysis, so may subsequently undergo repeat WES or WGS testing if high suspicion for genetic etiology Will likely miss actionable secondary findings (e.g., BRCA, Lynch syndrome genes) that are unrelated to epilepsy phenotype, but can profoundly affect medical prognosis & treatment No coverageof non-coding variantsthat have been implicated in generalized genetic epilepsy risk | | Whole Exome
Sequencing (WES) | Coding regions (exons) and exon/intron boundaries (~1-2% of genome) | Comprehensive coverage of coding regions and actionable gene findings Effective for heterogenous neurological conditions & comorbidities Able to identify mutations in novel genes Reanalysis is possible | More likely than MGP to result in incidental or secondaryfindings that require interpretation by medical geneticists and/or clinical action Depth of coverage is not uniform Unable to detect non-coding (intronic) variants Limited abilityto identify CNV or structural variants | | Whole Genome
Sequencing (WGS) | Entire genome | Detects coding and noncoding variants
(unlike other 2 options) Uniform coverage Able to identify mutations in novel genes
as well as non- coding (e.g., presumed
regulatory) regions Reanalysis is possible Allows detection of copy number
variants (CNV) and some (smaller)
structural variants | Most expensive and longest turnaround More challenging to get coveredby insurance Most likely to result in incidental findings that are more difficult to interpret Requires medical geneticist for full interpretation | | Chromosomal microarray - comparative genomic | Genome-wide copy number variants (CMV) & structural variants (e.g., deletions, translocations) | Cost effectivein people with epilepsy PLUS comorbid developmental delay (DD), intellectual disability (ID), or birthdefects Often considered as second line testing if previous testing was unrevealing because it detects structural variants that may be undetectable on other NGS-based tests | Not cost-effective as first-line genetic testing unless DD/ID or birth defect comorbidities Cannot detect balanced translocations and certain structural rearrangements, would need chromosome analysis (i.e., karyotype) | | Other genetic testing considerations: | Trio testing can be done with WES vs WGS if both biological parents are available. Quad testing feasible if there is an affected sibling + above Pros: identifies de novo mutations, Family/pregnancy planning Cons: risk of unexpected familial implications such as consanguinity or non-paternity | | |